Sejarah Parabola
Parabola dipelajari oleh Menaechmus yang merupakan murid dari Plato dan Eudoxus . Ia berusaha untuk menduplikasi kubus, yaitu untuk mencari sisi kubus yang memiliki volume dua kali lipat dari sebuah kubus yang diberikan. Oleh karena itu ia berusaha untuk memecahkan x^3 = 2 dengan metode geometri.
Bahkan metode geometris konstruksi penggaris dan kompas tidak bisa memecahkan ini (tapi Menaechmus tidak tahu ini). Menaechmus dipecahkan itu dengan mencari perpotongan dari dua parabola x^2 = y dan y^2 = 2 x.
Euclid menulis tentang parabola dan itu diberi nama yang sekarang oleh Apollonius. Fokus dan direktori dari parabola itu dikemukakan oleh Pappus .
Pascal mengemukakan parabola sebagai proyeksi lingkaran dan Galileo menunjukkan bahwa proyektil mengikuti jalur parabola.
Gregory dan Newton mengemukakan sebagai properti dari sebuah parabola yang membawa sinar sejajar cahaya untuk fokus.
Pedal parabola dengan titik sebagai titik pedal adalah cissoid . Pedal dari parabola dengan fokus sebagai pedal titik adalah garis lurus. Dengan kaki pedal directrix sebagai titik itu adalah hak strophoid (sebuah strophoid miring untuk himpunaniap titik lain dari directrix). Kurva pedal saat pedal titik gambar fokus dalam directrix adalah Trisectrix dari Maclaurin .
Evolute parabola adalah parabola Neile itu . Dari titik di atas tiga normals evolute dapat ditarik untuk parabola, sementara hanya satu normal dapat ditarik untuk parabola dari titik bawah evolute. Jika fokus parabola diambil sebagai pusat inversi, parabola membalikkan ke cardioid . Jika simpul parabola diambil sebagai pusat inversi, parabola membalikkan keCissoid dari Diocles . Para kaustik dari parabola dengan sinar tegak lurus terhadap sumbu parabola adalah Tschirnhaus's Cubic .
Sumber :
http://www-history.mcs.st-and.ac.uk/Curves/Parabola.html
http://xsquared.wikispaces.com/Parabola+History
Bahkan metode geometris konstruksi penggaris dan kompas tidak bisa memecahkan ini (tapi Menaechmus tidak tahu ini). Menaechmus dipecahkan itu dengan mencari perpotongan dari dua parabola x^2 = y dan y^2 = 2 x.
Euclid menulis tentang parabola dan itu diberi nama yang sekarang oleh Apollonius. Fokus dan direktori dari parabola itu dikemukakan oleh Pappus .
Pascal mengemukakan parabola sebagai proyeksi lingkaran dan Galileo menunjukkan bahwa proyektil mengikuti jalur parabola.
Gregory dan Newton mengemukakan sebagai properti dari sebuah parabola yang membawa sinar sejajar cahaya untuk fokus.
Pedal parabola dengan titik sebagai titik pedal adalah cissoid . Pedal dari parabola dengan fokus sebagai pedal titik adalah garis lurus. Dengan kaki pedal directrix sebagai titik itu adalah hak strophoid (sebuah strophoid miring untuk himpunaniap titik lain dari directrix). Kurva pedal saat pedal titik gambar fokus dalam directrix adalah Trisectrix dari Maclaurin .
Evolute parabola adalah parabola Neile itu . Dari titik di atas tiga normals evolute dapat ditarik untuk parabola, sementara hanya satu normal dapat ditarik untuk parabola dari titik bawah evolute. Jika fokus parabola diambil sebagai pusat inversi, parabola membalikkan ke cardioid . Jika simpul parabola diambil sebagai pusat inversi, parabola membalikkan keCissoid dari Diocles . Para kaustik dari parabola dengan sinar tegak lurus terhadap sumbu parabola adalah Tschirnhaus's Cubic .
Sumber :
http://www-history.mcs.st-and.ac.uk/Curves/Parabola.html
http://xsquared.wikispaces.com/Parabola+History
Tidak ada komentar:
Posting Komentar